కాంతి - లేజర్లు

 

           ప్రకృతి రంగులమయం. మనం ఒక వస్తువును కొనేటప్పుడు దాని రంగుకు ప్రాధాన్యం ఇస్తాం. ఏ వస్తువుకైనా ప్రత్యేకమైన రంగు అంటూ ఏదీ ఉండదు. అది ఏ కాంతినైతే పరావర్తనం చెందిస్తుందో అదే మనకు ఆ వస్తువు రంగులా కనిపిస్తుంది. మానవుడి కంటిలోని రెటీనాలో ఉండే శంఖాలు రంగులను గుర్తిస్తాయి. కాంతి సమక్షంలోనే రంగులను చూడగలం.

 

కాంతి విక్షేపణం
తెల్లని (సౌర) కాంతి పట్టకం ద్వారా ప్రసరిస్తే అది ఏడు రంగులుగా విడిపోతుందని న్యూటన్‌ కనుక్కున్నాడు. పట్టకంలో ప్రయాణించే ఏడు రంగులు వేర్వేరు వేగాలతో ప్రయాణించడం వల్ల అవి విడిపోయే ధర్మాన్ని కాంతి విక్షేపణం అంటారు. తరంగదైర్ఘ్యం పెరిగే క్రమంలో అమరి ఉన్న VIBGYOR రంగుల క్రమాన్ని ‘వర్ణపటం’ (spectrum) అంటారు. దీని ఆధారంగా తెల్లని కాంతిలో ఏడు రంగులు ఉంటాయని న్యూటన్‌ నిర్ధారించారు.
కాంతి విక్షేపణం, సంపూర్ణాంతర పరావర్తన ధర్మాల వల్ల ఇంద్రధనస్సు ఏర్పడుతుంది.

 

రంగులు
మనకు కనిపించే రంగులు దృష్టి వ్యవస్థకు సంబంధించిన అంశం. వస్తువులు తమపై పడిన ఏడు రంగుల్లో కొన్నింటిని శోషించుకొని, మరికొన్నింటిని విడుదల చేస్తాయి. వస్తువు వెలువరించే రంగుల మిశ్రమమే ఆ వస్తువు రంగుగా మనకు కనిపిస్తుంది. ఉదాహరణకు ఎర్ర గులాబి ఎరుపు రంగును తప్ప మిగతా అన్నింటిని శోషిస్తుంది. వస్తువు నుంచి వచ్చే కాంతి (విద్యుదయస్కాంత) తరంగం యొక్క పౌనఃపున్యం (తరంగదైర్ఘ్యం) దాని రంగును నిర్ణయిస్తుంది. మానవుడి కన్ను గుర్తించే VIBGYOR రంగుల తరంగదైర్ఘ్య అవధి సుమారు 400 నుంచి 700 నానో మీటర్లు. ఊదా (violet) రంగును మానవుడి కన్ను సరిగ్గా గుర్తించదు. స్వల్ప తేడాతో ఉండే మిలియన్‌ సంఖ్యలోని రంగులను కన్ను గుర్తిస్తుంది.
 ఒక వస్తువు తనపై పడే అన్ని రంగులను శోషిస్తే నల్లగా, రంగులన్నింటినీ పరావర్తనం చెందిస్తే తెల్లగా కనిపిస్తుంది. అంటే కాంతివిహీనం నల్లని రంగును, అన్ని రంగుల మిశ్రమం తెల్లని వర్ణాన్ని సూచిస్తాయి. ఒక రంగులో కనిపించే వస్తువును మరొక రంగు కాంతిలో చూస్తే నల్లగా, తెల్లని కాంతి సమక్షంలో చూస్తే అదే రంగులో కనిపిస్తుంది.
 ఎరుపు, ఆకుపచ్చ, నీలం రంగులను ప్రాథమిక వర్ణాలు (Primary Colours) అంటారు. ఈ మూడింటిని సమాన నిష్పత్తిలో కలిపితే తెలుపు రంగు ఏర్పడుతుంది. వేర్వేరు నిష్పత్తిలో కలపడం ద్వారా ఎన్నో రంగులను సృష్టించవచ్చు.
 రెండు ప్రాథమిక రంగులను సమాన పరిమాణంలో కలిపితే సయాన్, మెజెంటా, పసుపు రంగులు ఏర్పడతాయి. వీటినే గౌణ వర్ణాలు (Secondary Colours) అంటారు.
                  నీలం + ఆకుపచ్చ = ముదురు నీలం (Cyan)
                  నీలం + ఎరుపు = ముదురు ఎరుపు (Magenta)
                  ఆకుపచ్చ + ఎరుపు = పసుపు రంగు (Yellow)

రంగుల త్రిభుజం
 మూడు గౌణ రంగులను సమాన పరిమాణంలో కలిపితే తెలుపు వర్ణం ఏర్పడుతుంది.
 త్రిభుజంలో ఎదురెదురు రంగుల జతను ‘సంపూరక రంగులు’ అంటారు. వీటిని సమాన పరిమాణంలో కలిపితే తెలుపు రంగు ఏర్పడుతుంది.
ఉదా: నీలం + పసుపు = తెలుపు
 పసుపు వర్ణంలోకి మారిన తెల్లని దుస్తులను శుభ్రం చేయడానికి కొంత నీలివర్ణం వేస్తారు.

రంగుల త్రిభుజం నుంచి ఏర్పడే మరికొన్ని వర్ణాలు....
                  ముదురు నీలం + ముదురు ఎరుపు = నీలం
                  ముదురు ఎరుపు + పసుపు = ఎరుపు
                  పసుపు + ముదురు నీలం = ఆకుపచ్చ
CMYK: ప్రింట్‌ మీడియాలో వివిధ రంగుల కోసం ప్రాథమిక రంగులకు బదులు గౌణ రంగులు, నలుపు వర్ణాన్ని విరివిగా ఉపయోగిస్తారు. అందుకే రంగుల పోస్టర్లపై ఒక చివర CMYK అని రాసి ఉంటుంది. దినపత్రికల్లో పేజీకి ఒక చివర వివిధ రంగుల్లో ఉండే వృత్తాలు లేదా గళ్లు ఉంటాయి.
                  C = Cyan
                  M = Magenta
                  Y = Yellow
                  K = Black
 నక్షత్రం లేదా వేడిగా ఉండే వస్తువు నుంచి వచ్చే కాంతి రంగును దాని ఉష్ణోగ్రత నిర్ణయిస్తుంది. ట్యూబ్‌లైట్లు, ఇతర సీఎఫ్‌ఎల్‌ బల్బులపై రాసి ఉండే 6500 K దాని వర్ణ ఉష్ణోగ్రతను సూచిస్తుంది.
ఇంద్రధనస్సు: కాంతి విక్షేపణం, సంపూర్ణాంతర పరావర్తనాలతోపాటు కాంతి వక్రీభవన ధర్మాల వల్ల ఇంద్రధనస్సు ఏర్పడుతుంది.
వర్షం ఆగిన తర్వాత గాలిలో తేలియాడే నీటి బిందువులు పట్టకాల మాదిరి పనిచేయడం వల్ల ఇంద్రధనస్సు ఏర్పడుతుంది. సూర్యుడి నుంచి వచ్చిన కాంతి నీటిబిందువులోకి ప్రవేశించగానే విక్షేపణం చెందుతుంది. విక్షేపిత కాంతి కొన్ని ప్రత్యేక సందర్భాల్లో సంపూర్ణాంతర పరావర్తనం చెంది వెనుదిరిగి భూమిపై ఉండేవారికి ఇంద్రధనస్సులా కనిపిస్తుంది.

విక్షేపణం, సంపూర్ణాంతర పరావర్తనాలతో పాటు కాంతికిరణం నీటిబిందువు మొదటి ఉపరితలం వద్ద వక్రీభవనం చెందుతుంది. నీటిబిందువులో కాంతి ఒకసారి సంపూర్ణాంతర పరావర్తనం చెందితే ఏర్పడే ఇంద్రధనస్సును ‘ప్రాథమిక ఇంద్రధనస్సు’ అంటారు. దీనిలో రంగులు పై నుంచి కిందికి ఎరుపు నుంచి ఊదా రంగుకు అమరి ఉంటాయి. వర్షం చినుకులో కాంతి రెండుసార్లు సంపూర్ణాంతర పరావర్తనం చెందితే ‘గౌణ ఇంద్రధనస్సు’ ఏర్పడుతుంది. దీనిలో రంగులు పై నుంచి కిందికి VIBGYOR క్రమంలో ఉంటాయి.
సాధారణంగా ఇంద్రధనస్సు అర్ధవృత్తాకారంలో కనిపిస్తుంది. కానీ ఎత్తు నుంచి లేదా విమానం నుంచి చూస్తే వృత్తాకారంలో కనిపిస్తుంది. కొన్ని సందర్భాల్లో ప్రాథమిక, గౌణ ఇంద్రధనస్సులు ఒక దానిపై మరొకటి జంటగా కూడా ఏర్పడతాయి. ఇంద్రధనస్సు ఎల్లప్పుడూ సూర్యుడికి వ్యతిరేక దిశలోనే ఏర్పడుతుంది.

కాంతి పరిక్షేపణం (Scattering of Light)
తెల్లని కాంతి పుంజం దుమ్ము, ధూళి, పొగ, తేమ, పొగమంచు లాంటి చిన్న కణాలపై పతనం చెందినప్పుడు అది రంగులుగా విడిపోతూ, వివిధ దిశల్లోకి ప్రసారం చెందే ప్రక్రియనే పరిక్షేపణం అంటారు. కాంతి పరిక్షేపణం వల్ల ఆకాశం నీలిరంగులో, మేఘాలు కొన్ని సందర్భాల్లో తెలుపు వర్ణంలో; సూర్యోదయం, సూర్యాస్తమయాల్లో సూర్యుడు ఎరుపు వర్ణంలో కనిపిస్తాడు. ఎరుపు రంగును ప్రమాద సూచికగా ఉపయోగిస్తారు.
రేలీ పరిక్షేపణ నియమం ప్రకారం పరిక్షేపణం కాంతి రంగు తరంగదైర్ఘ్యం యొక్క నాలుగో ఘాతానికి విలోమానుపాతంలో ఉంటుంది.
పరిక్షేపణం ∝ 
 VIBGYOR రంగుల్లో నీలం రంగుకు తరంగదైర్ఘ్యం తక్కువ, పరిక్షేపణం ఎక్కువ.
ఉదా: ఇండిగో రంగుతో పోల్చితే నీలి రంగును కన్ను అధికంగా గుర్తిస్తుంది.
 ఉదయం, సాయత్రం సౌరకాంతి భూమికి సమాంతరంగా ఎక్కువ దూరం ప్రయాణిస్తుంది. దీంతో నీలి రంగు సంబంధిత రంగులన్నీ పరిక్షేపణం చెందగా మిగిలిన పసుపు, నారింజ, ఎరుపు రంగులు కంటిని చేరడం వల్ల సూర్యోదయం, సూర్యాస్తమయంలో సూర్యుడు ఎరుపు, నారింజ, పసుపు రంగుల్లో కనిపిస్తాడు.
 ఎరుపు రంగు కాంతికి తరంగదైర్ఘం అత్యధికం, పరిక్షేపణం అత్యల్పం. కాబట్టి పరిక్షేపణం చెందకుండా ఎరుపు రంగు కాంతినే అపాయ సూచికల్లో ఉపయోగిస్తారు.
 దుమ్ము, ధూళి, గాలి, ఇతర కణాలు లేనందువల్ల అంతరిక్షంలో కాంతి పరిక్షేపణం చెందదు. కాబట్టి అంతరిక్షంలో ఆకాశం ఎల్లప్పుడూ నలుపు రంగులోనే కనిపిస్తుంది.
 మేఘాల్లోని నీటి బిందువుల పరిమాణం గాలి, O2, N2 తదితర అణువుల పరిమాణం కంటే ఎక్కువగా ఉంటుంది. సుమారు 10 మైక్రోమీటర్ల వ్యాసార్ధంతో ఉండే నీటి బిందువులు కాంతిలోని అన్ని రంగులను పరిక్షేపణం చెందిస్తాయి. దీనివల్ల మేఘాలు కొన్ని సందర్భాల్లో వెండిలా మెరుస్తాయి. ఈ రకమైన పరిక్షేపణాన్ని 'Mie Scattering' అంటారు.
 సబ్బులు, షాంపులు, పేస్టులు ఏ రంగుల్లో ఉన్నప్పటికీ వాటి నురగ తెలుపు రంగులో ఉండటానికి కారణం పరిక్షేపణం.
 సి.వి. రామన్‌కు నోబెల్‌ బహుమతి రావడానికి కారణమైన ‘రామన్‌ ఎఫెక్ట్‌’ పరిశోధన కాంతి పరిక్షేపణానికి సంబంధించిందే.

వ్యతికరణం, వివర్తనం, ధ్రువణం
 

 సీతాకోకచిలక రెక్కలపై, సబ్బు నీటి బుడగలపై, పోలరాయిడ్‌ కళ్లద్దాల్లో మారే రంగులు; హోలోగ్రామ్‌లు, 3డీ సినిమాలు, సీడీలపై కనిపించే వివిధ రంగులను కాంతి ధర్మాలు వివరిస్తాయి. కాంతి తరంగ స్వభావాన్ని నిరూపించే ధర్మాలు వివర్తనం, వ్యతికరణం, ధ్రువణం. 
 

వ్యతికరణం (Interference)
రెండు సంబద్ధ కాంతి కిరణాలు యానకంలోని ఒక ప్రదేశం నుంచి ఒకే దిశలో ప్రయాణిస్తున్నప్పుడు ఒకదానిపై మరొకటి అధ్యారోహణం చెంది ఫలిత కాంతి తీవ్రతలో వరుస హెచ్చుతగ్గులు ఏర్పడే ధర్మాన్ని వ్యతికరణం అంటారు. వ్యతికరణాన్ని థామస్‌ యంగ్‌ జంట చీలికల ప్రయోగం ద్వారా కనుక్కున్నాడు.
 రెండు కాంతి కిరణాల మధ్య దశాభేదం శూన్యం లేదా స్థిరంగా ఉంటే వాటిని సంబద్ధ కాంతి కిరణాలు అంటారు.
 రెండు శృంగాలు లేదా ద్రోణులు కలిసే చోట వెలుగు పట్టీ; ఒక శృంగం, ఒక ద్రోణి కలిసే ప్రాంతంలో చీకటి పట్టీ ఏర్పడతాయి.
 సబ్బు నీటి బుడగలపై వివిధ రంగులు ఏర్పడటం; యాంటీ రిఫ్లెక్షన్‌ కళ్లజోళ్లు, కలర్‌ ఫిల్లర్ల లాంటివి పనిచేయడానికి కారణం కాంతి వ్యతికరణం.
 విశ్వంలో ఈథర్‌ అనే ఊహాజనిత యానకం లేదని మైకెల్‌సన్‌ - మోర్లే వ్యతికరణ మాపకం సహాయంతో నిరూపించాడు.
 ధ్వని విషయంలో విస్పందనాలు, స్థావర తరంగాలు ఏర్పడటానికి కారణం వ్యతికరణం. లేజర్‌ కాంతి విషయంలో వ్యతికరణాన్ని ఉపయోగించి LIGO (లేజర్‌ ఇంటర్‌ఫెరామీటర్‌ గ్రావిటేషనల్‌ అబ్జర్వేటరీ) ప్రాజెక్ట్‌ను చేపట్టారు. LIGOని ఉపయోగించి ‘గురుత్వ తరంగాల’ ఉనికిని గుర్తించారు.

వివర్తనం (Diffraction):
కాంతి తరంగాలు మొనదేలిన అంచులు, చిన్న ద్వారాల వద్ద వంగి ప్రయాణిస్తూ వాటి జ్యామీతియ నీడలోకి ప్రవేశించి వ్యతికరణానికి లోనయ్యే ప్రక్రియను వివర్తనం అంటారు. నీటి తరంగాలు, ధ్వని తరంగాలు,X -కిరణాలు; ఎలక్ట్రాన్, న్యూట్రాన్‌ల ప్రవాహాలు వివర్తన ధర్మాన్ని ప్రదర్శిస్తాయి. వివర్తనం అనే పదాన్ని మొదటిసారి గ్రిమాల్డి ఉపయోగించాడు.
 వ్యతికరణం వివర్తనంలో ఒక భాగం కానీ వివర్తనం వ్యతికరణంలో భాగం కాదు.

వివర్తనాలు రెండు రకాలు అవి: 
                  1) ఫ్రెనల్‌ వివర్తనం 
                  2) ఫ్రాన్‌హోఫర్‌ వివర్తనం
 సీడీ, డీవీడీలపై ఉండే ఇరుకైన ట్రాక్స్‌ వివర్తన గ్రేటింగ్‌లా పనిచేయడం వల్ల అవి కాంతి సమక్షంలో వివిధ రంగుల్లో కనిపిస్తాయి.
 త్రిమితీయ చిత్రం (3డీ ఫొటోగ్రాఫ్‌), హోలోగ్రామ్‌ను చూడటానికి వివర్తనం తోడ్పడుతుంది.
 X - కిరణాలు, ఎలక్ట్రాన్, న్యూట్రాన్‌ల వివర్తనం ద్వారా స్ఫటికం అంతర నిర్మాణాన్ని తెలుసుకోవచ్చు.
 కాంతి తరంగదైర్ఘ్యం విలువతో పోల్చదగిన పరిమాణంలో ఉండే అంచులు, ద్వారాలు, వాతావరణ కణాలు వివర్తనాన్ని ప్రదర్శిస్తాయి. వాతావరణం కలగజేసే వివర్తనంతో మేఘాలు, సూర్యుడు, చంద్రుడి చుట్టూ అప్పుడప్పుడు రంగుల వలయాలు లేదా వెండి చారలు ఏర్పడతాయి. సీతాకోకచిలక రెక్కలపై వివర్తనం వల్ల అందమైన రంగులు కనిపిస్తాయి.
 చేతి వేళ్ల మధ్య ఉండే ఖాళీ ప్రదేశం నుంచి ట్యూబ్‌లైట్‌ కాంతిని చూస్తే నిలువు చీకటి వెలుగు రేఖలు కనిపిస్తాయి.

ధ్రువణం (Polarization)
సాధారణ (అధ్రువిత) కాంతిలో విద్యుత్‌ క్షేత్రం కంపనాలు అన్ని తలాల్లో ఉంటాయి. ఈ కాంతిని కొన్ని రకాల స్ఫటికాల (క్వార్ట్జ్, టూర్మలీన్, కాల్‌సైట్‌) ద్వారా పంపితే వెలువడే కాంతిలోని విద్యుత్‌ క్షేత్రం కంపనాలు ఒకే తలానికి పరిమితమయ్యే ధర్మాన్ని ధ్రువణం అంటారు. ధ్రువణం తిర్యక్‌ తరంగ ధర్మం కాబట్టి గాలిలో ప్రయాణించే ధ్వని తరంగాలు ధ్రువణాన్ని ప్రదర్శించవు.
 

ధ్రువిత కాంతులు మూడు రకాలు అవి: 
                1) సమతల ధ్రువిత కాంతులు
                2) వృత్తాకార ధ్రువిత కాంతులు
                3) దీర్ఘవృత్తాకార ధ్రువిత కాంతులు
 ధ్రువిత కాంతిని పరావర్తనం, పరిక్షేపణం, శోషణం, ద్వివక్రీభవనం, డైక్లోరిక్‌ స్ఫటికాలు, పోలరాయిడ్‌ల ద్వారా పొందవచ్చు. ధ్రువణాన్ని పోలరాయిడ్‌ కళ్లద్దాల్లో; ఎండ తీక్షణతను తగ్గించేందుకు, 3డీ సినిమాలను చూసేందుకు వాడే కళ్లద్దాల్లో ఉపయోగిస్తారు.
 పొలారిమీటర్‌ను ఉపయోగించి కర్బన రసాయన శాస్త్రంలో దృక్‌ అణు సాదృశ్యాన్ని (Optical isomerism) తెలుసుకోవచ్చు. LCD(లిక్విడ్‌ క్రిస్టల్‌ డిస్‌ప్లే) తెరల్లో ధ్రువిత కాంతిని ఉపయోగిస్తారు.

 కాంతి యాంత్రిక తరంగాల రూపంలో ఈథర్‌ అనే ఊహాత్మక యానకంలో ప్రయాణిస్తుందని హైగెన్స్‌ ప్రతిపాదించాడు. ఈయన తరంగం యొక్క తరంగదైర్ఘ్యం కాంతి రంగును నిర్ణయిస్తుందని తెలిపాడు. ఈ సిద్ధాంతం వ్యతికరణం, వివర్తనాలను వివరించినప్పటికీ కాంతి విద్యుత్‌ ఫలితం, కాంప్టన్‌ ఫలితం, కృష్ణ వస్తువు వికిరణాలను వివరించలేదు.
 కాంతి చిన్న శక్తి ప్యాకెట్ల రూపంలో ప్రయాణిస్తుందని ప్లాంక్‌ ‘క్వాంటం సిద్ధాంతాన్ని’ ప్రతిపాదించాడు. క్వాంటం (శక్తి ప్యాకెట్‌) hv (శక్తి) పూర్ణాంక గుణిజానికి సమానం. దృశ్య కాంతి క్వాంటం ఫోటాన్‌. క్వాంటం సిద్ధాంతం కాంతి విద్యుత్‌ ఫలితం, కాంప్టన్‌ ఫలితం, కృష్ణ వస్తువు వికిరణాలను వివరించినప్పటికీ వ్యతికరణం, వివర్తనం, ధ్రువణాలను వివరించలేదు.
 విద్యుదయస్కాంత తరంగాల రూపంలో శూన్యంలో కూడా ప్రయాణిస్తుందని మాక్స్‌వెల్‌ ‘విద్యుదయస్కాంత తరంగ సిద్ధాంతాన్ని’ ప్రతిపాదించాడు. ఇది వ్యతికరణం లాంటి అంశాలను వివరించినప్పటికీ కాంతి విద్యుత్‌ ఫలితాన్ని వివరించలేదు.
 కాంతికి రెండు స్వభావాలు ఉంటాయి. కాంతి కణ స్వభావం కొన్నింటిని వివరిస్తే, తరంగ స్వభావం మరికొన్నింటిని వివరిస్తుంది.

విద్యుదయస్కాంత తరంగాలు ఏడు రకాలు

వీటిలో దృశ్యకాంతి తప్పా మిగతావి మనకు కనిపించవు. విద్యుదయస్కాంత తరంగాలన్నీ శూన్యంలో కాంతి వేగంతో ప్రయాణిస్తాయి.

C = 3 × 108 మీ./సె.
  = శూన్య ప్రవేశ్యశీలత
 = శూన్యం పెర్మిటివిటీ
  గామా కిరణాలు అత్యంత శక్తిమంతమైన విద్యుదయస్కాంత వికిరణాలైతే రేడియో తరంగాలు అత్యంత బలహీనమైనవి.

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...